Multiple Causes of Fatigue during Shortening Contractions in Rat Slow Twitch Skeletal Muscle
نویسندگان
چکیده
Fatigue in muscles that shorten might have other causes than fatigue during isometric contractions, since both cross-bridge cycling and energy demand are different in the two exercise modes. While isometric contractions are extensively studied, the causes of fatigue in shortening contractions are poorly mapped. Here, we investigate fatigue mechanisms during shortening contractions in slow twitch skeletal muscle in near physiological conditions. Fatigue was induced in rat soleus muscles with maintained blood supply by in situ shortening contractions at 37°C. Muscles were stimulated repeatedly (1 s on/off at 30 Hz) for 15 min against a constant load, allowing the muscle to shorten and perform work. Fatigue and subsequent recovery was examined at 20 s, 100 s and 15 min exercise. The effects of prior exercise were investigated in a second exercise bout. Fatigue developed in three distinct phases. During the first 20 s the regulatory protein Myosin Light Chain-2 (slow isoform, MLC-2s) was rapidly dephosphorylated in parallel with reduced rate of force development and reduced shortening. In the second phase there was degradation of high-energy phosphates and accumulation of lactate, and these changes were related to slowing of muscle relengthening and relaxation, culminating at 100 s exercise. Slowing of relaxation was also associated with increased leak of calcium from the SR. During the third phase of exercise there was restoration of high-energy phosphates and elimination of lactate, and the slowing of relaxation disappeared, whereas dephosphorylation of MLC-2s and reduced shortening prevailed. Prior exercise improved relaxation parameters in a subsequent exercise bout, and we propose that this effect is a result of less accumulation of lactate due to more rapid onset of oxidative metabolism. The correlation between dephosphorylation of MLC-2s and reduced shortening was confirmed in various experimental settings, and we suggest MLC-2s as an important regulator of muscle shortening.
منابع مشابه
Causes of fatigue in slow-twitch rat skeletal muscle during dynamic activity.
Skeletal muscle fatigue is most often studied in vitro at room temperature and is classically defined as a decline in maximum force production or power output, exclusively linked to repeated isometric contractions. However, most muscles shorten during normal use, and we propose that both the functional correlate of fatigue, as well as the fatigue mechanism, will be different during dynamic cont...
متن کاملAttenuated Fatigue in Slow Twitch Skeletal Muscle during Isotonic Exercise in Rats with Chronic Heart Failure
During isometric contractions, slow twitch soleus muscles (SOL) from rats with chronic heart failure (chf) are more fatigable than those of sham animals. However, a muscle normally shortens during activity and fatigue development is highly task dependent. Therefore, we examined the development of skeletal muscle fatigue during shortening (isotonic) contractions in chf and sham-operated rats. Si...
متن کاملForce depression in human quadriceps femoris following voluntary shortening contractions.
The purpose of this study was to investigate whether the isometric muscle force, redeveloped following maximal-effort voluntary shortening contractions in human skeletal muscle, is smaller than the purely isometric muscle force at the corresponding length. Isometric knee extensor moments, surface electromyographic (EMG) signals of quadriceps femoris, and interpolated twitch moments (ITMs) were ...
متن کاملEffects of fatigue on sarcoplasmic reticulum and myofibrillar properties of rat single muscle fibers.
Force decline during fatigue in skeletal muscle is attributed mainly to progressive alterations of the intracellular milieu. Metabolite changes and the decline in free myoplasmic calcium influence the activation and contractile processes. This study was aimed at evaluating whether fatigue also causes persistent modifications of key myofibrillar and sarcoplasmic reticulum (SR) proteins that cont...
متن کاملThe Effect of Intensive Endurance Activity on Myocyte Enhancer Factor 2C Gene Expression of Slow and Fast Twitch Muscles in Male Wistar Rats: An Experimental Study
Background and Objectives: Myocyte enhancer factor 2c activates the genes of the slow-twitch muscle, the muscle which plays role in endurance activity. Therefore, the aim of this study was to evaluate the effect of a program of intensive endurance activity on MEF2c gene expression in fast and slow twitch skeletal muscles in wistar rats. Materials and Methods: In this experimental study, 14 mal...
متن کامل